Local solvability of the operator utt + ia(t)ux + b(t)ut + c(t)u
نویسندگان
چکیده
منابع مشابه
Solvability of Systems of Linear Operator Equations
Let G be a semigroup of commuting linear operators on a linear space S with the group operation of composition. The solvability of the system of equations /,/ = ,■, i = I, ... , r, where /, e G and j e S , was considered by Dahmen and Micchelli in their studies of the dimension of the kernel space of certain linear operators. The compatibility conditions Ijfr = Irfj , i ^ j , are necessar...
متن کاملLocal solvability of the k-Hessian equations
In this work, we study the existence of local solutions in R to k-Hessian equation, for which the nonhomogeneous term f is permitted to change the sign or be non negative; if f is C∞ , so is the local solution. We also give a classification for the second order polynomial solutions to the k−Hessian equation, it is the basis to construct the local solutions and obtain the uniform ellipticity of ...
متن کاملOn the Local Solvability of Darboux’s Equation
We reduce the question of local nonsolvability of the Darboux equation, and hence of the isometric embedding problem for surfaces, to the local nonsolvability of a simple linear equation whose type is explicitly determined by the Gaussian curvature. Let (M, g) be a two-dimensional Riemannian manifold. A well-known problem is to ask, when can one realize this locally as a small piece of a surfac...
متن کاملOn the Solvability of a Fourth Order Operator Differential Equations
We establish sufficient conditions for the solvability of a fourth order operator differential equation. These conditions are expressed in terms of operator coefficients. 1. Preliminaries In this paper we consider the problem P (d/dt)u = du dt4 +Au+ 4 ∑ j=0 Aj d4−ju dt4−j = f, (1.1) e1 ui(0) = 0, i = 0, 1, si ∈ {0, 1, 2, 3}, (1.2) e2 where f ∈ L2(R+,H), and A0, A1, A2, A3, A4 and A are unbounde...
متن کاملساختار کلاسهایی از حلقه های z- موضعی و c- موضعی the structure of some classes of z-local and c-local rings
فرض کنیمr یک حلقه تعویض پذیر ویکدار موضعی باشدو(j(r رایکال جیکوبسن r و(z(r مجموعه مقسوم علیه های صفر حلقه r باشد.گوییم r یک حلقه z- موضعی است هرگاه j(r)^2=. .همچنین برای یک حلقه تعویض پذیر r فرض کنیم c یک عنصر ناصفر از (z( r باشد با این خاصیت که cz( r)=0 گوییم حلقه موضعی r یک حلقه c - موضعی است هرگاه و{0 و z(r)^2={cو z(r)^3=0, نیز xz( r)=0 نتیجه دهد که x عضو {c,0 } است. در این پایان نامه ساخ...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 1973
ISSN: 0022-0396
DOI: 10.1016/0022-0396(73)90041-7